Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Immunol Invest ; : 1-22, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622991

ABSTRACT

Osteoarthritis (OA) is now widely acknowledged as a low-grade inflammatory condition, in which the intrinsic immune system plays a significant role in its pathogenesis. While the involvement of macrophages and T cells in the development of OA has been extensively reviewed, recent research has provided mounting evidence supporting the crucial contribution of NK cells in both the initiation and advancement of OA. Accumulated evidence has emerged in recent years indicating that NK cells play a critical role in OA development and progression. This review will outline the ongoing understanding of the utility of NK cells in the etiology of OA, focusing on how NK cells interact with chondrocytes, synoviocytes, osteoclasts, and other immune cells to influence the course of OA disease.

2.
Int J Pharm ; 655: 124028, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38518871

ABSTRACT

Ovarian cancer is a malignant tumor that seriously endangers the lives of women, with chemotherapy being the primary clinical treatment. However, chemotherapy encounters the problem of generating multidrug resistance (MDR), mainly due to drug efflux induced by P-glycoprotein (P-gp), which decreases intracellular accumulation of chemotherapeutic drugs. The drugs efflux mediated by P-gp requires adenosine triphosphate (ATP) hydrolysis to provide energy. Therefore, modulating energy metabolism pathways and inhibiting ATP production may be a potential strategy to reverse MDR. Herein, we developed a PTX-ATO-QUE nanoparticle (PAQNPs) based on a PLGA-PEG nanoplatform capable of loading the mitochondrial oxidative phosphorylation (OXPHOS) inhibitor atovaquone (ATO), the glycolysis inhibitor quercetin (QUE), and the chemotherapeutic drug paclitaxel (PTX) to reverse MDR by inhibiting energy metabolism through multiple pathways. Mechanistically, PAQNPs could effectively inhibit the OXPHOS and glycolytic pathways of A2780/Taxol cells by suppressing the activities of mitochondrial complex III and hexokinase II (HK II), respectively, ultimately decreasing intracellular ATP levels in tumor cells. Energy depletion can effectively inhibit cell proliferation and reduce P-gp activity, increasing the chemotherapeutic drug PTX accumulation in the cells. Moreover, intracellular reactive oxygen species (ROS) is increased with PTX accumulation and leads to chemotherapy-resistant cell apoptosis. Furthermore, PAQNPs significantly inhibited tumor growth in the A2780/Taxol tumor-bearing NCG mice model. Immunohistochemical (IHC) analysis of tumor tissues revealed that P-gp expression was suppressed, demonstrating that PAQNPs are effective in reversing MDR in tumors by inducing energy depletion. In addition, the safety study results, including blood biochemical indices, major organ weights, and H&E staining images, showed that PAQNPs have a favorable in vivo safety profile. In summary, the results suggest that the combined inhibition of the two energy pathways, OXPHOS and glycolysis, can enhance chemotherapy efficacy and reverse MDR in ovarian cancer.


Subject(s)
Antineoplastic Agents , Nanoparticles , Ovarian Neoplasms , Humans , Female , Mice , Animals , Paclitaxel , Ovarian Neoplasms/pathology , Atovaquone/pharmacology , Atovaquone/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm , Drug Resistance, Multiple , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Energy Metabolism , Adenosine Triphosphate/metabolism
3.
Article in English | MEDLINE | ID: mdl-37964172

ABSTRACT

Silymarin (SM) exhibits clinical efficacy in treating liver injuries, cirrhosis, and chronic hepatitis. However, its limited water solubility and low bioavailability hinder its therapeutic potential. The primary objective of this study was to compare the in vitro and in vivo characteristics of the four distinct SM solubilization systems, namely SM solid dispersion (SM-SD), SM phospholipid complex (SM-PC), SM sulfobutyl ether-ß-cyclodextrin inclusion complex (SM-SBE-ß-CDIC) and SM self-microemulsifying drug delivery system (SM-SMEDDS) to provide further insights into their potential for enhancing the solubility and bioavailability of SM. The formation of SM-SD, SM-PC, and SM-SBE-ß-CDIC was thoroughly characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffractometry (PXRD) techniques to analyze the changes in their microscopic structure, molecular structure, and crystalline state. The particle size and polydispersity index (PDI) of SM-SMEDDS were 71.6 ± 1.57 nm, and 0.13 ± 0.03, respectively. The self-emulsifying time of SM-SMEDDS was 3.0 ± 0.3 min. SM-SMEDDS exhibited an improved in vitro dissolution rate and demonstrated the highest relative bioavailability compared to pure SM, SM-SD, SM-PC, SM-SBE-ß-CDIC, and Legalon®. Consequently, SMEDDS shows promise as a drug delivery system for orally administered SM, offering enhanced solubility and bioavailability.

4.
Anal Chim Acta ; 1279: 341789, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37827683

ABSTRACT

There has been significant interest in the preparation and versatile applications of carbon dots (CDs) due to their immense potential value in sensors and imaging. In this work, silicon-doped green carbon dots (Si-CDs) with high quantum yield and rich epoxypropyl were effectively synthesized. Given the clinical diagnostic importance of abnormal levels of tyrosinase (TYR), sensitive detection of TYR is significant for clinical research. A fluorescence signal-off strategy with Si-CDs as probe was constructed to determine TYR based on the oxidation of dopamine by TYR. The detection ranges of this method were 0.01-1.5 and 10-30 U/mL with the detection limit of 0.0046 U/mL, the lower limit of quantification (LLOQ) was 0.01 U/mL, and TYR was successfully and accurately monitored in human serum. Additionally, due to the role of lysosomes in cellular regulatory processes, including TYR levels and fluorescence stability characteristics of Si-CDs in acidic conditions, it was envisaged to use Si-CDs as probe to establish real-time monitoring of lysosomes. According to fluorescence colocation analysis, Si-CDs had intrinsic lysosomal targeting ability to HepG2 and L-02 (with Pearson correlation coefficients were 0.90 and 0.91, respectively). The targeting of Si-CDs to lysosomes was due to the acidophilic effect of the epoxypropyl on its surface.


Subject(s)
Monophenol Monooxygenase , Quantum Dots , Humans , Carbon , Dopamine , Oxidation-Reduction , Fluorescent Dyes , Nitrogen
5.
Int J Biol Macromol ; 253(Pt 4): 126954, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37734518

ABSTRACT

Biocompatibility hydrogel conductors are considered as sustainable bio-electronic materials for the application of wearable sensors and implantable devices. However, they mostly face the limitations of mismatched mechanical properties with skin tissue and the difficulty of recycling. In this regard, here, a biocompatible, tough, reusable sensor based on physical crosslinked polyvinyl alcohol (PVA) ionic hydrogel modified with ι-carrageenan (ι-CG) helical network was reported. Through simulating the ion transport and network structure of biological systems, the ionic hydrogels with skin-like mechanical features exhibit large tensile strain of 640 %, robust fracture strength of 800 kPa, soft modulus and high fatigue resistance. Meanwhile, the ionic hydrogel-based sensors possess a high response to strain/pressure over a wide range and could be utilized for multimodal sensing of human activity signals. Benefit from biosafety and temperature reversibility of ι-CG and PVA endow hydrogels with not only biocompatibility, but also meaningfully recyclability. The as-prepared hydrogels could be freely reconstructed into new flexible electronics and safely integrated with the human skin. It could be anticipated that the physically cross-linked ionic hydrogel conductor could expand the options for next-generation bio-based sensors.


Subject(s)
Hydrogels , Polyvinyl Alcohol , Humans , Polyvinyl Alcohol/chemistry , Carrageenan , Temperature , Hydrogels/chemistry , Ions/chemistry , Electric Conductivity
6.
J Hazard Mater ; 460: 132426, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37683352

ABSTRACT

The impact of primary metabolites of organophosphate triesters (tri-OPEs), namely, organophosphate diesters (di-OPEs), on the ecology, environment, and humans cannot be ignored. While extensive studies have been conducted on tri-OPEs, research on the environmental occurrence, toxicity, and health risks of di-OPEs is still in the preliminary stage. Understanding the current research status of di-OPEs is crucial for directing future investigations on the production, distribution, and risks associated with environmental organophosphate esters (OPEs). This paper specifically reviews the metabolization process from tri-OPEs to di-OPEs and the occurrence of di-OPEs in environmental media and organisms, proposes typical di-OPEs in different media, and classifies their toxicological and epidemiological findings. Through a comprehensive analysis, six di-OPEs were identified as typical di-OPEs that require prioritized research. These include di-n-butyl phosphate (DNBP), bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP), and diphenyl phosphate (DPHP). This review provides new insights for subsequent toxicological studies on these typical di-OPEs, aiming to improve our understanding of their current status and provide guidance and ideas for research on the toxicity and health risks of di-OPEs. Ultimately, this review aims to enhance the risk warning system of environmental OPEs.


Subject(s)
Ecology , Phosphates , Humans , Epidemiologic Studies , Organophosphates/toxicity
7.
Biomed Pharmacother ; 166: 115316, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572638

ABSTRACT

Melanoma is a highly aggressive form of skin cancer with limited therapeutic options. Chemo-photothermal combination therapy has demonstrated potential for effectively treating melanoma, and transdermal administration is considered the optimal route for treating skin diseases due to its ability to bypass first-pass metabolism and enhance drug concentration. However, the stratum corneum presents a formidable challenge as a significant barrier to drug penetration in transdermal drug delivery. Lipid-nanocarriers, particularly cubosomes, have been demonstrated to possess significant potential in augmenting drug permeation across the stratum corneum. Herein, cubosomes co-loaded with doxorubicin (DOX, a chemotherapeutic drug) and indocyanine green (ICG, a photothermal agent) (DOX-ICG-cubo) transdermal drug delivery system was developed to enhance the therapeutic efficiency of melanoma by improving drug permeation. The DOX-ICG-cubo showed high encapsulation efficiency of both DOX and ICG, and exhibited good stability under physiological conditions. In addition, the unique cubic structure of the DOX-ICG-cubo was confirmed through transmission electron microscopy (TEM) images, polarizing microscopy, and small angle X-ray scattering (SAXS). The DOX-ICG-cubo presented high photothermal conversion efficiency, as well as pH and thermo-responsive DOX release. Notably, the DOX-ICG-cubo exhibited enhanced drug permeation efficiency, good biocompatibility, and improved in vivo anti-melanoma efficacy through the synergistic effects of chemo-photothermal therapy. In conclusion, DOX-ICG-cubo presented a promising strategy for melanoma treatment.


Subject(s)
Hyperthermia, Induced , Melanoma , Nanoparticles , Humans , Indocyanine Green , Phototherapy/methods , Photothermal Therapy , Administration, Cutaneous , Scattering, Small Angle , X-Ray Diffraction , Doxorubicin/pharmacology , Melanoma/drug therapy , Nanoparticles/chemistry , Cell Line, Tumor
8.
ACS Appl Mater Interfaces ; 15(24): 28993-29003, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37284783

ABSTRACT

Stretchable hydrogels as landmark soft materials have been efficiently utilized in the field of wearable sensing devices. However, these soft hydrogels mostly cannot integrate transparency, stretchability, adhesiveness, self-healing, and environmental adaptability into one system. Herein, a fully physically cross-linked poly(hydroxyethyl acrylamide)-gelatin dual-network organohydrogel is prepared in a phytic acid-glycerol binary solvent via a rapid ultraviolet light initiation. The introduction of gelatin as the second network endows the organohydrogel with desirable mechanical performance (high stretchability up to 1240%). The presence of phytic acid not only synergizes with glycerol to impart environment-tolerance to the organohydrogel (from -20 to 60 °C) but also increases the conductivity. Moreover, the organohydrogel demonstrates a durable adhesive performance toward diverse substrates, a high self-healing efficiency through heat treatment, and favorable optical transparency (transmittance of 90%). Furthermore, the organohydrogel achieves high sensitivity (gauge factor of 2.18 at 100% strain) and rapid response time (80 ms) and could detect both tiny (a low detection limit of 0.25% strain) and large deformations. Therefore, the assembled organohydrogel-based wearable sensors are capable of monitoring human joint motions, facial expression, and voice signals. This work proposes a facile route for multifunctional organohydrogel transducers and promises the practical application of flexible wearable electronics in complex scenarios.


Subject(s)
Gelatin , Glycerol , Humans , Phytic Acid , Physical Phenomena , Tissue Adhesions , Electric Conductivity , Hydrogels
9.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049323

ABSTRACT

New ways of recycling fly ash are of great significance for reducing the environmental pollution. In this work, biodegradable hydrophobic poly (L-lactic acid)/fly ash composites for anti-icing application were successfully fabricated via a facile solvent-volatilization-induced phase separation approach. A silane coupling agent of 3-(Trimethoxysilyl) propyl methacrylate was used to decorate a fly ash surface (FA@KH570) for strengthening the interface bonding between fly ash and poly (L-lactic acid). Moreover, FA@KH570 could obviously enhance the crystallinity of poly (L-lactic acid) (PLLA)/FA@KH570 composites, which accelerated the conversion from the liquid-liquid to the liquid-solid phase separation principle. Correspondingly, the controllable surface morphology from smooth to petal-like microspheres was attained simply by adjusting the FA@KH570 content. After coating nontoxic candle grease, the apparent contact angle of 5 wt% PLLA/FA@KH570 composite was significantly increased to an astonishing 151.2°, which endowed the composite with excellent anti-icing property. This strategy paves the way for recycling waste fly ash and manufacturing hydrophobic poly (L-lactic acid) composite for potential application as an anti-icing material for refrigerator interior walls.

10.
Adv Healthc Mater ; 12(19): e2203019, 2023 07.
Article in English | MEDLINE | ID: mdl-37104840

ABSTRACT

Although the combination of chemotherapy and immune checkpoint inhibitors (ICIs) can treat triple-negative breast cancer (TNBC), the severe effects of chemotherapy on immune cells significantly reduce the efficacy of the ICIs. Photodynamic therapy (PDT) with high selectivity is an alternative to chemotherapy that can also effectively treat hypoxic TNBC. However, high levels of immunosuppressive cells, and low infiltration of cytotoxic T lymphocytes (CTLs) limit the efficacy of PDT combined with ICIs. This study aims to evaluate the role of drug self-delivery nanocubes (ATO/PpIX-SMN) combined with anti-PD-L1 in TNBC treatment. Anti-malarial atovaquone (ATO) enhances protoporphyrin IX (PpIX)-mediated PDT-induced immunogenic cell death and downregulates tumor Wnt/ß-catenin signaling. Furthermore, the nanocubes combined with anti-PD-L1, which synergistically induce maturation of dendritic cells, promote infiltration of CTLs, reduce regulatory T cells, and significantly activate the host immune system, thus treating primary and distal tumors. This work demonstrates that ATO/PpIX-SMN can enhance the response rate of anti-PD-L1 in TNBC treatment via O2 -economized photodynamic-downregulating Wnt/ß-catenin signaling.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Triple Negative Breast Neoplasms/drug therapy , beta Catenin/metabolism , Wnt Signaling Pathway , Immunotherapy
11.
Food Chem ; 418: 135991, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37023669

ABSTRACT

This study investigated the structure, rheological behaviors and in vitro digestibility of oil-modified cross-linked starches (Oil-CTS). Gelatinized Oil-CTS were hard to be digested due to its intact granule shapes and the presence of surface-oil, which acted as physical barriers that inhibited the diffusion and penetration of enzymes to starch. Besides, the less amylose content in Oil-CTS (23.19-26.96%) than other starches (26.84-29.20%) contributed to its low digestibility because amylose with less α-1,6 linkages was more easily attacked by amyloglucosidase than amylopectin. Moreover, heat treatment during oil could shorten the amylopectin chain length and destroy the ordered structures, thus increasing enzymatic hydrolysis on starch. Pearson correlation analysis indicated rheological parameters were not significantly correlated with digestion parameters (p > 0.05). Overall, despite the damage caused by heat to molecular structures, physical barrier effect caused by surface-oil layers and integrity of swollen granules was the most critical contributor to the low digestibility of Oil-CTS.


Subject(s)
Amylopectin , Amylose , Amylopectin/chemistry , Amylose/chemistry , Hydrolysis , Molecular Structure , Starch/chemistry , Oils/chemistry
12.
Front Pharmacol ; 14: 1133011, 2023.
Article in English | MEDLINE | ID: mdl-36909187

ABSTRACT

Drug resistance is a huge hurdle in tumor therapy. Tumor hypoxia contributes to chemotherapy resistance by inducing the hypoxia-inducible factor-1α (HIF-1α) pathway. To reduce tumor hypoxia, novel approaches have been devised, providing significant importance to reverse therapeutic resistance and improve the effectiveness of antitumor therapies. Herein, the nanosystem of bovine serum albumin (BSA)-templated manganese dioxide (MnO2) nanoparticles (BSA/MnO2 NPs) loaded with doxorubicin (DOX) (DOX-BSA/MnO2 NPs) developed in our previous report was further explored for their physicochemical properties and capacity to reverse DOX resistance because of their excellent photothermal and tumor microenvironment (TME) response effects. The DOX-BSA/MnO2 NPs showed good biocompatibility and hemocompatibility. Meanwhile, DOX-BSA/MnO2 NPs could greatly affect DOX pharmacokinetic properties, with prolonged circulation time and reduced cardiotoxicity, besides enhancing accumulation at tumor sites. DOX-BSA/MnO2 NPs can interact with H2O2 and H+ in TME to form oxygen and exhibit excellent photothermal effect to further alleviate hypoxia due to MnO2, reversing DOX resistance by down-regulating HIF-1α expression and significantly improving the antitumor efficiency in DOX-resistant human breast carcinoma cell line (MCF-7/ADR) tumor model. The hypoxia-ameliorated photothermal MnO2 platform is a promising strategy for revering DOX resistance.

13.
Environ Int ; 174: 107875, 2023 04.
Article in English | MEDLINE | ID: mdl-36933305

ABSTRACT

Microbeads used in personal care products have been one of the important sources of microplastics (MPs), and little has been reported on their environmental behaviors and health risks. The characteristics of environmentally persistent free radicals (EPFRs) and the toxicity assessment of MPs (environmentally relevant concentrations) from cosmetics during photoaging remains largely unknown. In this study, the formation of EPFRs on polyethylene (PE) microbeads from facial scrubs under light irradiation and their toxicity were investigated using C. elegans as a model organism. The results suggested that light irradiation induced the generation of EPFRs, which accelerates the aging process and alters the physicochemical properties of PE microbeads. Acute exposure to PE (1 mg/L) at photoaged times of 45-60 d significantly decreased the physiological indicators (e.g., head thrashes, body bends, and brood size). The oxidative stress response and stress-related gene expression were also enhanced in nematodes. The addition of N-acetyl-l-cysteine induced significant inhibition of toxicity and oxidative stress in nematodes exposed to 45-60 d of photoaged PE. The Pearson correlation results showed that the concentration of EPFRs was significantly correlated with physiological indicators, oxidative stress, and related-genes expression in nematodes. The data confirmed that the generation of EPFRs combined with heavy metals and organics contributed to toxicity induced by photoaged PE, and oxidative stress might be involved in regulating adverse effects in C. elegans. The study provides new insight into the potential risks of microbeads released into the environment during photoaging. The findings also highlight the necessity for considering the role of EPFRs formation in evaluating the impacts of microbeads.


Subject(s)
Cosmetics , Plastics , Animals , Microspheres , Caenorhabditis elegans , Free Radicals , Oxidative Stress , Microplastics/toxicity , Polyethylene , Cosmetics/toxicity , Cosmetics/chemistry
14.
J Pharm Sci ; 112(4): 1119-1129, 2023 04.
Article in English | MEDLINE | ID: mdl-36596394

ABSTRACT

The encapsulation efficiency (EE) of hydrophobic drug into cubosomes was high by conventional methods, while poor for the hydrophilic drug. In this study, a remote loading method based on transmembrane pH-gradient was applied to prepare hydrophilic drug loaded cubosomes. Several hydrophilic drugs were selected and studied. Results showed just part of the investigated drugs were successfully loaded into cubosomes by the remote loading method, whereas all the drugs failed to be encapsulated by the high-pressure homogenization method. The EE based on remote loading method was affected by the solubility, LogP, number of rings, and polarizability of the drug independent of the number of hydrogen acceptor and hydrogen donor. And the drugs that had high EE by remote loading method were BCS class 1 or 2. In addition, the EE base on remote loading method was significantly affected by the external water pH of cubosomes and drug concentration. The size of drug-loaded cubosomes by remote loading method mainly depended on the pre-formed blank cubosomes, which was bigger than that by high-pressure homogenization method. The preparation method affected the liquid crystalline structure of acidic drug loaded cubosomes, while showed no obvious effect on that of basic drug loaded cubosomes. The release of drug was susceptible to the pH of release medium independent of the preparation method. The drug-loaded cubosomes prepared by different method all showed favorable stability during storage. The remote loading method was a promising approach for the efficient encapsulation of hydrophilic drug into cubosomes. This study laid a foundation for the application of remote loading method on the preparation of hydrophilic drug loaded cubosomes.


Subject(s)
Liquid Crystals , Nanoparticles , Solubility , Liquid Crystals/chemistry , Hydrogen-Ion Concentration , Particle Size , Nanoparticles/chemistry
15.
Food Chem ; 409: 135337, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36587514

ABSTRACT

This work investigated the effects of oil-modified crosslinked starch (Oil-CTS) as a fat replacer on the gel properties, water distribution, microstructures, and fatty acid composition of pork meat batter. Results showed that the replacement of pork back fat by Oil-CTS could improve the gel performance in terms of rheological property, texture, and water-holding capacity (WHC), and reduce the water mobility of pork meat gels, which caused by the formation of a more ordered and denser protein network structure. Additionally, when the fat was replaced by Oil-CTS partially or totally (25-100 %), the total fat content in pork meat gels decreased by 16.5-82 % and the saturated fatty acids (SFAs) content decreased from 5.87 g/100 g in untreated sample to 1.17-4.88 g/100 g in starch-replacing-fat samples, indicating Oil-CTS could be used as a fat replacer to prepare the low-fat meat products.


Subject(s)
Meat Products , Pork Meat , Red Meat , Animals , Swine , Starch , Water/chemistry , Meat Products/analysis , Fatty Acids , Gels
16.
J Hazard Mater ; 446: 130643, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36586333

ABSTRACT

Triphenyl phosphate (TPHP) is a widely used aryl organophosphate flame retardant (OPFR) that has attracted attention due to its frequent detection in the environment and living organisms. To date, the reproductive toxicity of TPHP has been investigated in organisms, but its molecular mechanisms are not fully understood. Caenorhabditis elegans (C. elegans) is the ideal animal for the study of reproductive toxicity following environmental pollutants, with short generation times, intact reproductive structures, and hermaphroditic fertilization. This study aimed to explore the reproductive dysfunction and molecular mechanisms induced by TPHP exposure in C. elegans. Specifically, exposure to TPHP resulted in a reduction in the number of eggs laid and developing embryos in utero, an increase in the number of apoptotic gonadal cells, and germ cell cycle arrest. The JNK signaling pathway is a potential pathway inducing reproductive toxicity following TPHP exposure based on transcriptome sequencing (RNA-seq). Moreover, TPHP exposure induced down-regulation of vhp-1 and kgb-2 gene transcription levels, and the knockout of vhp-1 and kgb-2 in the mutant strains exhibited more severe toxicity in apoptotic gonad cells, embryos, and eggs developing in utero, suggesting that vhp-1 and kgb-2 genes play a crucial role in TPHP-induced reproductive toxicity. Our data provide convergent evidence showing that TPHP exposure results in reproductive dysfunction through the JNK signaling pathway and improve our understanding of the ecotoxicity and toxicological mechanisms of aryl-OPFRs.


Subject(s)
Caenorhabditis elegans , Flame Retardants , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , MAP Kinase Signaling System , Organophosphates/toxicity , Flame Retardants/toxicity , Flame Retardants/metabolism
17.
Environ Int ; 168: 107482, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35998411

ABSTRACT

As a major alternative to traditional brominated flame retardants (BFRs), decabromodiphenyl ethane (DBDPE) is widely used and has been commonly detected in various environmental media and organisms. Few previous studies have focused on DBDPE-induced locomotion neurotoxicity, and the exact molecular mechanisms and related health risks remain unclear. In this study, we first analyzed the locomotion indicators of nematodes following DBDPE exposure, demonstrated that DBDPE caused locomotion neurotoxicity, and identified that a series of the transthyretin (TTR)-like genes participated in the regulation of nematode motility by transcriptomic analysis, gene transcription validation and TTR-like mutant verification. Subsequently, this study demonstrated that DBDPE exacerbated amyloid-beta (Aß) deposition by repressing TTR/TTR-like gene transcription based on Alzheimer's disease (AD) model nematodes and human SH-SY5Y cells following DBDPE exposure and further revealed that DBDPE reduced the binding between TTR and Aß by competing with the strand G region sites on the TTR/TTR-like protein, ultimately exacerbating Aß deposition and the risk of AD. In short, our study demonstrated that DBDPE induced locomotion neurotoxicity and potential AD risks through intensifying Aß deposition by inhibiting TTR/TTR-like proteins, providing reference support for risk management and policy formulation related to DBDPE and similarly structured novel BFRs.

18.
Environ Pollut ; 311: 119927, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35970344

ABSTRACT

Environmental pollutants such as heavy metals, nano/microparticles, and organic compounds have been detected in a wide range of environmental media, causing long-term exposure in various organisms and even humans through breathing, contacting, ingestion, and other routes. Long-term exposure to environmental pollutants in organisms or humans promotes exposure of offspring to parental and environmental pollutants, and subsequently results in multiple biological defects in the offspring. This review dialectically summarizes and discusses the existing studies using Caenorhabditis elegans (C. elegans) as a model organism to explore the multi/transgenerational toxicity and potential underlying molecular mechanisms induced by environmental pollutants following parental or successive exposure patterns. Parental and successive exposure to environmental pollutants induces various biological defects in C. elegans across multiple generations, including multi/transgenerational developmental toxicity, neurotoxicity, reproductive toxicity, and metabolic disturbances, which may be transmitted to progeny through reactive oxygen species-induced damage, epigenetic mechanisms, insulin/insulin-like growth factor-1 signaling pathway. This review aims to arouse researchers' interest in the multi/transgenerational toxicity of pollutants and hopes to explore the possible long-term effects of environmental pollutants on organisms and even humans, as well as to provide constructive suggestions for the safety and management of emerging alternatives.


Subject(s)
Environmental Pollutants , Metals, Heavy , Animals , Caenorhabditis elegans , Environmental Pollutants/toxicity , Epigenesis, Genetic , Humans , Metals, Heavy/toxicity , Reproduction
19.
Food Res Int ; 158: 111521, 2022 08.
Article in English | MEDLINE | ID: mdl-35840229

ABSTRACT

This study investigated the texture properties, water mobility and microstructure of surimi gel added with crosslinked tapioca starch (CTS) and acetylated tapioca starch (ATS), and their counterparts modified with oil (Oil-CTS and Oil-ATS, respectively). Both Oil-CTS and Oil-ATS could improve the breaking force, deformation and elasticity of surimi gel, especially Oil-CTS. Additionally, oil-modified starches could increase the water-holding capacity of surimi gels and prompt the transformation of free water to bound water, resulting in the decrease of water mobility. The difference between oil-modified starches and their counterparts in gel-enhancing effect is due to the swelling ability and different microstructure of surimi/starch gels. Namely, oil-modified starches prompted the formation of a more homogeneous and compact gel network, endowing the surimi/Oil-CTS gel with tiny pores due to its restricted swelling property, while others were opposite. Raman spectral results further unveiled that the addition of oil-modified starches promoted the protein conformational transition from α-helix to ß-sheet and ß-turn, as well as a decrease of ionic bonds and an increase of hydrogen bonds and hydrophobic interactions of surimi gel, which were beneficial to form firm and compact gel structure. The overall results indicated the new oil-modified starches (especially Oil-CTS) have great potential to improve the quality of surimi-based products.


Subject(s)
Carps , Animals , Food Handling/methods , Gels/chemistry , Starch/chemistry , Water
20.
Food Chem ; 391: 133236, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35609462

ABSTRACT

This work investigated the multiscale structure and gelatinization properties of different oil-modified crosslinked starches and their relationship with the texture and microstructure of surimi/starch composite gels. The results showed clusters were formed by the agglomeration of starch, with oil on the surface of granules. Oil modification did not damage the long-range crystalline structure but impaired the short-range ordered structure. A high oil modification degree was shown to weaken starch structure, in contrast to an adverse effect for a high crosslinking level. Furthermore, compared with crosslinked starches, Oil-CTS had lower pasting temperature and gelatinization enthalpy, a higher viscosity, and better gel-reinforcing effect. Correlation analysis revealed the texture of surimi/starch composite gels was negatively correlated with the helical structure and pasting temperature of starch, and positively correlated with final and setback viscosity of starch and the swollen size of starch granules in surimi gel.


Subject(s)
Starch , Chemical Phenomena , Gels , Starch/chemistry , Temperature , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...